
CONFORMATION OF DISUBSTITUTED TROPANES

J.H. Supple, L.N. Pridgen, and J.J. Kaminski

Department of Chemistry State University College Fredonia, New York 14063

(Received in USA 14 February 1969; *received in UK for publication 13 April 1969)

Recent interest in the conformations of tropane and piperidine derivatives (1-9) prompts us to report our interpretation of the NMR spectra (10) of three tropanes that are substituted in the 2-and 3-positions (11). The chemical shift data listed in Table I has two particularly significant features. The absorption of the hydrogens at the 6-and 7-positions in Ia and

Ib as well as in tropine (3- α -hydroxytropane, Ic) (3) is shifted downfield relative to the absorption in IIb and in pseudotropine (3- β -hydroxytropane, IIa). This deshielding of the hydrogens on the ethane bridge indicates (3) proximity of the electronegative 3- α -substituent and is possible only in a chair conformation. Similarly, the β -hydrogen on the 4-position (H_{4 β}) is deshielded relative to the α -hydrogen (H_{4 α}) in compounds Ia, Ib, and IIb

but not in the compounds lacking the 2-substituents. This deshielding, from the 1,3-diaxial proximity of $H_{4\beta}$ and the 2 β -bromine, is evidence of the chair-like conformation of the three disubstituted tropanes.

Table 1

	Cher	nical Shif	ts (ppm fr	om TMS)			
	^H 1 ^H 5	^H 6 ^H 7	^H 2	N-CH3	н 3	$^{\text{H}}4\beta$	
Tropine (3)	3.0	2.05	1.6-1.9	2.16	3.9		
Pseudotropine (3)	3.07	1.5-1.8	1.5-1.8	2.22	3.7		
Ia	3.25	2.25	4.60	2.31	4.49	2.77	2.05
Ib	3.15	1.99	4.05	2.23	(a)	2.27	1.55
IIb	3.37	1,65	4.30	2.22	(b)		

- (a) The H_2 and H_3 protons were indistinguishable.
- (b) This proton is believed to be hidden under the H₁, H₅ multiplet.

A somewhat better approximation of the conformations of the disubstituted tropanes is available from a consideration of the various coupling constants. The ABX system comprising ${\rm H_{4\beta}}$, ${\rm H_{4\alpha}}$, and ${\rm H_5}$ was investigated using decoupling techniques by irradiation at ${\rm H_3}$. The other pertinent coupling constants were obtained from the undecoupled spectra. Examination of the J values in Table II shows that all of the coupling constants are of the magnitude expected for axial-equatorial and equatorial-equatorial couplings. However, only the cisbromohydrin IIb shows the identical coupling constants expected (12) from a perfect chair conformation. The inequality of $J_{4\beta-5}$ and $J_{4\alpha-5}$ as well as $J_{4\beta-3}$ and $J_{4\alpha-3}$ observed for both Ia and Ib indicates that these compounds exist in a distorted chair conformation.

All of these data are consistent with compounds Ia and Ib existing in a chair conformation distorted slightly by interactions between the 3β -substituents and the ethane bridge. When this interaction is removed, as in IIb the distortion is removed (13).

	^J 3-4β	^J 3-4a	^J 4β-5	J _{4a-5}	^J 4α-4β	J ₂₋₃	J ₁₋₂		
Ia	[*] 4.0	< 1	4.0	3.0	16	, < 1	< 1		
Ib	4.0-4.2	< 1	4.0	3.0	15	< 1	< 1		
IIb		·				3.5	3.5		

Table II
Coupling Constants (Hz)

Acknowledgement. One of us (JHS) is grateful to the Research Foundation of the State University of New York for Faculty Research Fellowships and Grants 24-64-A, B, and C. We are grateful to Mr. Jack Donovan and Dr. Earl Krakower for assistance in obtaining NMR spectra and to Mr. J. Elton Dewhurst for technical assistance.

References

- 1. H. Schenk, C. H. MacGillavry, S. Skolnik and J. Laan, Acta Cryst. 23, 423 (1967).
- 2. N. Mandava and G. Fodor, Can. J. Chem. 46, 2761 (1968).
- 3. R. J. Bishop, G. Fodor, A. R. Katritzky, F. Soti, L. E. Sutton, and F. J. Swinbourne, J. Chem. Soc. (C), 74 (1966).
- 4. G. L. Closs, J. Am. Soc. 81, 5456 (1959).
- 5. C. Y. Chen and R. J. W. LeFevre, J. Chem. Soc., 3467 (1965).
- 6. C. Y. Chen and R. J. W. LeFevre, ibid., 3473 (1965).
- 7. J. Parello, P. Longivialle, W. Vetter and J. A. McCloskey, Bull. Soc. Chem. 2787 (1963).
- 8. R. E. Lyle and C. R. Ellefson, J. Am. Chem. Soc. 89, 4563 (1967).
- 9. M. L. Stien, R. Ottinger, J. Reisse, and G. Chuirdoglu, Tetrahedron Letters, 1521 (1968).
- 10. NMR and decoupling studies were carried out in CDCl₃ (60MHz) on Perkin-Elmer-Hitachi R-20 and JNM-C-60 HL spectrometers.

- 11. The synthesis of Ia, Ib, and IIb will be the subject of a future paper.

 All new compounds gave satisfactory analyses.
- 12. J. R. Dyer, <u>Applications of Absorption Spectroscopy of Organic Compounds</u>, p. 117, Prentice-Hall Inc., Englewood Cliffs, New Jersey (1965).
- 13. X-ray studies reported (1) for pseudotropine indicated that this molecule exists in a distorted chair form in the solid state.